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Real-time scattering experiments

Interesting hadron-hadron and hadron-lepton colliders abound

LHC EIC LUX

Sanford

Underground
Research
Facility




Real-time scattering theory

Lepton-hadron cross-sections can be predicted using QCD +
electroweak perturbation theory




It’s hard to Iimagine

W = (fl" (27, 2)J" (4", 9)li)

= eI p(E,) Y e P ()

For strategies and practical challenges see e.g. Hansen, Meyer, Robaina PRD 96 (2017)
Gambino and Hashimoto PRL 125 (2020)



Lattice QCD and A

LQCD can provide accurate constraints on v A cross sections at a wide range of
energies with complementary strengths and weaknesses to experiment

See USQCD v A white paper: Kronfeld et al Eur. Phys. J. A 55 (2019)

Elastic nucleon
form factors

&% Multi-nucleon
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Usual lattice QCD strategy
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Orders of limits

Usual lattice QCD strategy

This talk

Signs of trouble first pointed out in Hoshina, Fujii, Kikukawa, PoS LATTICE2019, 190 (2020)



The Simple Harmonic Oscillator

Continuum SHO action:

1 ,  w? 2 1 ) | W 2
Sula(®)] = [ dt; (Ora(t)? ~ 5ot Selo(®) = [ dt(Ora(t)? + ot
Real-time Imaginary-time
Path integral definition:
< :E’\e_mLT\m >= /wLT:x Dy etM < x’|6_ﬁLT|zB >= / o Dx e~ °F



The lattice SHO

Lattice SHO action

Lr/a—1 | 2 Lr/a—1 1 w2
SM(xt) — _(xnaJra — xna)Q — _33727@ SE(xt) — _(xnaJra — xna)Q - _x727,a
— 2a 2 — 2a 2

Lattice SHO path intgerals

LT/a_l ! LT/a—l

mLT:CL‘/ 'S " wLT—x A
/ Dz ™ =<z H Thl|z > / Dz e 57 =< 2| H Tg|r >
o= n:O —— n:O
Transfer matrix:
~ (2 iw2 ~ w2
<x/("+1)“|TM|x”“> = e (Tnato e =5 o, <x/(n—|—1)a|TE|37na> — ¢~ 2a(Tnata—Tna) =5 T,
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Orders of limits

For the SHO, the continuum limit commutes with analytic
continuation between real and imaginary time

A

T/a _Hr
TE

€

T — 1t

y a— 0
A a —.A
Ty ﬁ o—iH?

Real-time transfer matrix Imaginary-time transfer matrix is
IS unitary positive

n_ —iaV /2 _—iaK _—iaV /2 N —aV /2 —aK _—aV /2
Ty = e e e Ty =€ € e



The quantum rotator

Free particle constrained to move on a circle
x(t) € |0, 27]

Same continuum action can be used as free SHO

Naive discretization breaks periodicity, usual prescription in
Euclidean is to use different action with same small-a behavior

LT/CL_]- 1 LT/CL—l

1
SM(CUt) — 5 Z [ Cos(xna-l—a — xna) SE(xt) — 5 Z 1 — Cos(xna—l—a — xna)

n=0 n=0

Real-time transfer matrix:

A

T(2t1q,y) = e« CO(Frra=ae)
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Non-unitarity

Explicit calculations shows the quantum rotator real-time transfer
matrix is non-unitary:

A

Toe(z,y)Thy (v, 3') # 6(z — 2')

Unitarity requires eigenvalue ratios to have magnitude 1as a — 0

But a — 0 limits of these eigenvalues ratios do not exist for
quantum rotators

a > 0
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Lattice gauge theory

Gauge transformations act on a ()ab,),b
matter fields as ww Sy wx

(2, € SU(N), U(1)

Gauge field acts as parallel

transporter in color space Ul,,u c SU(N)7 U(1)
Dzbw Uab wx—l—,u o w Ux,,u _ 6ia,AM(ac)
.‘.
Dt — "Dy o = Dl
Gauge invariant building blocks:
m—
=%
_a. o .b Tr( Y A )
pr—h& UZC,,LL wx
P= L
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Wilson loops

| ® O

" A WA — H U:r;,,u — M A
- x,ueE0A

) ® ©

Sw,static
Wilson loops are equivalent to static quark propagators

Sw static — Z ¢ Dlﬂpx

Since by equatlons of motion z% ) = H U ,) 4¢(x 0)
=0

r

Static quark potential accessible from Wilson loops )
Wixr) Z Z, e En(nT — o=VI(T 4
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The Wilson action

| "‘Plaquettes” are 1x1 Wilson loops
W A 1 —1
PQ%W/ — UxaﬂUx_l_:aa’/U:E—I—ﬂ—F’nAu,uUiE—I—ﬁ,V
= —

Wilson action provides simple, gauge-invariant action with
correct naive continuum limit

1w
Sw(U) = o > N Tr[2— Py — Py

r p<v

Wilson loops can be expressed using plaquettes, most simply
taking open boundary conditions and gauge-fixing v, , =1

DD WA — H Ux,,u — H Pa:,,ul/
DD x,ue0A re A
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2D Confinement

In 2D, Wilson loop expectation values further factorize into
products of single-plaquette expectation values

<D> <D> (T (W.0)) =

rec A

Implies confinement

<D> <D> %<Tr<w;4>> — e

Vi(r)=or

)

Static quark potential

Confining potential arises for
any gauge group in 2D from
factorization

Gross and Witten, PRD 21 (1980)
Wadia, arXiv:1212.2906 (1979)

H <Tr(PZB)> —

(Tr(P))”
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The real-time Wilson action

Wilson action splits into kinetic (timelike plaguettes) and
potential (spacelike plaquttes) terms

Making usual sign flips, a real-time Wilson action is obtained

Saw (U =—> >1T1' {2— z,0k — Pka}
> Tr Py i P;ilj}
r 1<)

In (1+1)D only the kinetic term appears, and path integrals are
simply related between real- and imaginary-time

oS w (U,g%) _ ,—Se,w(Uig?)

18



The Wilson action is non-unitary

Wick rotate action

5 . 9 | 11(4@'/92)]“
— 1 —Tr(W > = [ :
9> — ig <2 Wa) =B
Non-unitary time
evolution
1
<—TT(WA)> =
2 E.W,SU(2)
Analytically continue time -
. <lTr(WA)> _ [11(4/92)]_7’
T — 2 M,HFK,SU(2) I>(4/9°)
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The HFK action

The non-unitarity of the Wilson real-time transfer matrix was first
pointed out by Hoshina, Fujii, and Kikukawa (HFK)

Hoshina, Fujii, Kikukawa, PoS LATTICE2019, 190 (2020)

Starting from the character expansion of the Wilson action

e OB w(llU) _ 6—§VW(U)H Z W ka)

The real-time HFK action is defined by replacing the eigenvalues
with pure phases to give a unitary transfer matrix by construction

eSmaxr(U) — =2 Vw (U) TT 1D e ()X (Pror)

r




Wilson and HFK in (1+1)D

Analytic calculations using HFK action in (1+1)D recover exact
results for analytic continuation of Euclidean Wilson to real time

20 ' . T T I | I ]
— \Vilson == === HFK -
] W SU(z))
1.5 arg (W)
— T
a
) |
? = 1.0 B 1 I R O S DO I 71/2
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1 -77/2
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92

Analytic results for real-time Wilson action show non-unitary continuum
limit or have singularities obstructing limit (depends on N)
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Divergences

HFK action well-defined for analytic calculations, but character
expansion defining HFK action is a divergent function of gauge field

4

oS, axF(U) _ ,—tVw (U) H Z[C,,‘fv(62)]ixr(Px,0k)
x,k

/’fﬁ

Pure phase

Non-zero fo_r all r _for some or all
field configurations

Rapid phase fluctuations lead to convergence of HFK path
Integrals, but without absolute convergence impossible to
perform sum over representations using Monte Carlo methods
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Changing paths

Consider a path integral with a sign problem Many previous works:

1 Witten, AMS/IP
(Ohys = 5 /M DU v (U) o))

Stud.Adv.Math. 50 (2011)

Cristoforetti, D1 Renzo,
Scorzato, PRD 86 (2012)

Deform the integration contour

1 , ~ ~ Recent review:

_— — DU QZSM (U) O(U) Alexandru, Basar, Bedaque,

AYEAY Warrington, arXiv:2007.05436
— — | DU JWU) ST o(U(U))
Deformed integrand can have less severe sign problem
=7 | DU )] e T o)

« otRe[Sa (U (U))]+-iarg[J (U)]
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A toy sign problem

ion _ L [T 49 iy pseos(e) _ 11(5)
(e %_ Z[;2w€ c ~ To(B)

integral result unaffected by

Stokes’ theorem + _
contour deormation

holomorphic integrand

Constant vertical deformation:

T+ f
(%) _ 1 / dd i¢ pcos(e)
Z

identified

/ dp io—f Bcos(o+if)
2T

_ <€i¢—f€[3 COS(¢+if)—Bcos(¢)>ﬁE (Qe) 5

Detmold, Kanwar, Lamm, MW, Warrington, arXiv:2101.12668 24



Variance reduction

The variance involves non-holomorphic integrands

Varg|Re Q.| = <(Re Qe)2>5 — <€i¢>2 # Varg|Re €i¢]

\ Q. = e TePer?

100 = B8 =2
= I
- — A=A
K, 10 =
= 1 — =5
CS% _
>
~
g 1s
"L
>,
as)
c%l 0.10 =
=
0.01 [ [ [ [
—1.0 —0.5 0.0 0.5 1.0
J

Detmold, Kanwar, Lamm, MW, Warrington, arXiv:2101.12668
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Deformed observables

Deformed observables method: contour deformations
without modifying Monte Carlo sampling

1
)=~ /M DU e=5U) o)
1 5 ST (T

a -~ ~~
= — DU e W) C =S(UU))+S(U)
/ e det (8 ) e OWU(U))

_ 1 o—S(U) _
=5 | P 0w () = ()

Detmold, Kanwar, MW, Warrington, PRD 102 (2020)
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2D U(1) contour deformations

Using the parameterization

dP s S0\ A
(Wa) = (/ P ez (PHP )>

. 27’(’]0(1/62)
P=¢e?cU(1)
- i d¢ i 5 cos(e) !
U(1) Wilson loops are products of toy = orlo(1/¢) © € e

sign problem integrals -

Contour deformation analogous to toy _i¢ (i f
problem for U(1) Wilson loops el? —y ei(oFif)

Toft { Original Deformed == Exact ¢ —. Exact StN StN( X ,A)
102 —
0.3 - —
0 _
0]_ —————.———'—r.—.—;—':—’e. ———————————————————————— 10_2 N 1
0.0 +rrrm T —T 10~ % — T —TT T —TT T
101 102 10— 1 109 101 102

oA
Detmold, Kanwar, MW, Warrington, PRD 102 (2020) Zl



2D SU(3) contour deformations

Variance minimization of parameterized deformations is a well-posed
optimization problem suitable for machine learning techniques

Pararr(1et)erization and optimization strategies recently explored for
SU(N

10° 3
i b (W3') (original)
100-E ) — A=1 A=17 4
—— A=3  —— A=19 1 I (Qa) (deformed)
—— A=5  —— A=21 10 3
1071 — A=7  —— A=23 .
; —— A9  —— A=25 i
— A=27
2 —— A=29 1072 -
10729 | — A=31 .
< i
1072 ; 1073 =
1.1 | | '
1 Ratio to exact ‘ eHING

. 1.0 - K

; - LT

I I I I () —

500 1000 1500 2000 0.9 | | | | |
training iteration 8 16 24 32 40 48 56 64
A

Detmold, Kanwar, Lamm, MW, Warrington, arXiv:2101.12668




Deformations and convergence

Contour deformation methods can also improve convergence of
real-time unitary actions

Z/DUeiSM(U,n) — Z/DU J(U) 6iSM((Af/(U,n),n)

{n}C t, but not .
Ogggg%ﬁgg, e Possibly absolutely
convergent if cutoff
provided by

(can’t Monte Carlo)
e—Im[SM (ﬁ(U,n),n)]

If (and only if) absolutely convergent path integral representation
exists, can use Monte Carlo to perform joint sum-integral

Kanwar, MW, arXiv:2103.02602
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Convergent U(1) HFK ?

A simple contour deformation appears to provide convergence

¢£U,Ok — ¢x,0k — ¢x,0k + 1 Sigﬂ(rx,k)

eiSM,HKF(ﬁ,r) — o2 Vw (U) H |:[CW(€2)]i6irx,k¢x,Oke_lra:,k|:|

identified

Exponential damping leads to absolute
convergence everyone on deformed contour

Except on the parts that we implicitly canceled
In order to shift continuously...

¢x,0k — ¢x,0k =+ iaaz,k

a € [0,sign(ry k)]




Wick rotation regularization

Minkowski action regularized by introducing “Wick rotation™ angle

Euclidean: 0 = (
9 0.7/2 Small for large ||
Minkowski: 6 = 7 /2
. I OO )
eiSM,HKF(U) N e—ﬁvw(U) H Z [C
x,k Lr=—00 i
Sum absolutely convergent for 6 < 7/2 /idcntiﬁcd

Recipe for real-time path integrals N
valid ¢(¢)

1) Regularize with Wick rotation angle

2) Perform contour deformation, enforcing
cancellations arising from shift symmetry

3) Take Minkowski limit on deformed contour valid ¢(¢) |/



Real-time U(1) HFK results

Infinite sum in contour deformed real-time HFK action can be
performed stochastically with integer-valued auxiliary field

/DU J(U) e 5W0) = /DUZ e=S(U:r)

17}

Results consistent with exact (1+1)D analytic continuation

0 5 10 15 20 25 30

7L /a’

Real-time noisier, contour deform improves but doesn’t completely

remove sign problem

_05F
_1.0L

_15L e

150

1.0f

0.0F

- 3 _%‘ i [
R Im
O““l““Q““S““él
tL/a?
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What about SU(N) ?

Wick rotation of kinetic term still provides regularization

Sum more complicated, involves functions whose magnitudes
can’t be reduced using vertical deformations

ro_, S+ 1)9)
sin(0)

Analogous definition of convergent HFK path integrals for lattice
QCD possible, but we haven’t found it

33



The heat-kernel equation
Alternative starting point — Kogut-Susskind Hamiltonian

\ Generalization of (minus) Laplacian to
gauge group manifold

Wilson action is in eigenbasis of potential

Eigenbasis of kinetic operator - solutions to “heat-kernel” equation
(‘9T/CE(U, 7') — A/CE(U, 7')

o

. 1
Solution for U(1): Keum(e?,—€*)= )  exp [—2—62(¢+2m)2]

n=—aoo

Generalization to SU(N) starting point for heat-kernel action
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The heat-kernel action

Eigenvalue phases

: v

Koo (U5 )= S T(6)inhew [~ 504 +2m)?

Ugly but known, /

Solution for SU(N):

N N
non-singular SU(N) constraint: pr = nt=0
function (N) Az_:l Az_:l

Isotropic Euclidean action with right naive continuum limit:

2
G_SE’HK(U) — H /CE <Px,,uw %)

T, u<v

35



The Schrodinger equation

Analytic continuation of heat-kernel equation gives Schrodinger
equation on gauge group

10K (U, 1) = —AK s (U, )

Euclidean solution can be analytically continued straightforwardly

@)

. )
ICM,U(l)(wa, 62) = Z EXP |:2_€2(¢ + 27Tn)2:|

n——aoo

2

Casvoo (U5 ) = S T D eww | 56"+ 2mn?)

naA——0o0
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More divergences

Minkowski analog of heat-kernel action

2

ZSMHK(U) —H/CM( x,0ky " ) H /CM( ’Mm_92>

x,1<]

Includes different but analogously divergent series

o

. )
Karua)(e?,e?) = > exp {@(@b + 27””&)2} Non-vanishising
n=—o00 for large n

92
Karsuav (U, )

)= Y T i ex {_2@ P

nA=——00

Field configurations with infinitely many winding numbers all

contribute to path integrals, suppressed by rapid phase fluctuations -



The HK action

No symmetries lost by changing potential term

. . 2
e mr(U) — g—iaVw (U) 11 K (Pa:,()kv %)

Divergence now only arises in kinetic term and takes the form of
sum over Gaussian phases (times ugly but known function)

2

Kusvoo (U.5) = Y Tl nhew |56 +2m)

naA=——0o0

Amenable to same strategy as U(1) HFK:
1) regularize kinetic term
2) deform integration contour to provide convergence
3) remove regulator
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Convenient variables

In order to perform contour deformations on eigenvalue phases,
we need a few changes of variables

Temporal boundary conditions or Euclidean segments can be used
to solve equations of motion for links in terms of plaquettes

{ULU,,LL7 nf,k} g {Pw,Oka x,0 na; k}

Eigenvector matrices V) ok can be “integrated in” freely

A A
{UCU,,[L7 ng},k} A {¢az,0k7 VCB,Ok? x,05 n, k}
A=1,....N
Correlations from SU(N) constraint can be diagonalized

{ X, xk}H{wakv x,0k ZL’O? a:k}
A=1,...,N—1 .



Convergent SU(N) HK

Wick rotated heat-kernel kinetic term in nice variables

N—1

G — j({gb},{n}) H eg%PA(tbA—I—%TmA)Q

A=1

n-dependent contour deformation:

Provides exponential convergence
everywhere except in neighborhood G ~e
of endpoints
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Convergent SU(N) HK

Wick rotation provides absolutely convergence everywhere on
deformed contour

N—1
G — J({e} {n}) [[ e v 70 2™y
A=1

Blue contours cancel by shift symmetry for all Wick rotation angle

5(&?1)‘ o(2)

After enforcing cancellation of blue segments, sum-integral on pink
contour is absolutely convergent for all gauge field values

Absolutely convergent SU(N) path integrals defined by taking

Minkowski limit after cancelling blue contours »



Real-time U(1) HK results

Similar stochastic sampling of auxiliary integer variables works for
heat-kernel action

For n=0 terms (dominant in classical approximation), this contour
deform completely removes sign problem

7

2 1 2
eze2¢ — € 2e2¢

Correspondingly no signal-to-noise degradation of <e"'Re[SM]> =1

TL/a’ tL/a’ 42



Real-time SU(3) HK results

Similar sampling strategies work for SU(3)

For n=0 terms, contour deform similarly removes Gaussian phase
fluctuations

Remaining phase fluctuations from Jacobian and heat-kernel
prefactor, partition function sign problem observed to be mild

0.001 -

L /a?
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Conclusions

Many interesting
guestions about
gauge theory involve
challenges from sign
problems

e I ] . _

N i “ + Aconvergent, unitary action can be

o RN constructed for real-time lattice
Ut gauge theory

Path integral contour deforms can
improve the sign problem,
remaining challenge for (3+1)D

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
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